model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, 'relu'))
model.add(tf.keras.layers.Dense(10, 'softmax'))
model.compile('adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'])
epoch_history = model.fit(training_images, training_labels, epochs = 30, validation_split = 0.2)

plt.plot(epoch_history.history['accuracy'])
plt.plot(epoch_history.history['val_accuracy'])
plt.legend(['train accuracy', 'validation accuracy'])
plt.show()

train accuracy는 정답을 알려주니까 학습을 할 수록 올라가는데, validation accuracy는 올라가지 않는다 

이런 상황을 오버 피팅이라고 한다.

+ Recent posts