Accessing, Deleting, and Inserting Elements Into ndarrays
x = np.random.randint(1, 20, 7)
# array([ 3, 6, 3, 5, 13, 9, 19])
x[3]
# 5
x[-1]
# 19
다차원배열의 인덱스 접근
X = np.random.randint(0, 100, (5, 5))
# array([[39, 48, 91, 8, 8],
# [12, 7, 70, 25, 69],
# [54, 77, 71, 92, 73],
# [12, 20, 39, 45, 53],
# [ 1, 57, 95, 31, 87]])
X[0,2]
# 91
항목 삭제
x = np.array([ 3, 6, 3, 5, 13, 9, 19])
np.delete(x, 3)
# array([ 3, 6, 3, 13, 9, 19])
X = np.array([[69, 10, 98, 68, 32],
[14, 56, 73, 48, 69],
[36, 48, 40, 28, 90],
[45, 47, 65, 12, 95]])
np.delete(X, 2, axis = 0)
# array([[69, 10, 98, 68, 32],
# [14, 56, 73, 48, 69],
# [45, 47, 65, 12, 95]])
np.delete(X, 1, axis = 1)
# array([[69, 98, 68, 32],
# [14, 73, 48, 69],
# [36, 40, 28, 90],
# [45, 65, 12, 95]])
항목을 끝에 추가하기
a = np.arange(5)
a = a.reshape(1, 5)
np.append(X, a, axis = 0)
# array([[69, 10, 98, 68, 32],
# [14, 56, 73, 48, 69],
# [36, 48, 40, 28, 90],
# [45, 47, 65, 12, 95],
# [ 0, 1, 2, 3, 4]])
b = np.arange(4)
b = b.reshape(4, 1)
np.append(X, b, axis = 1)
# array([[69, 10, 98, 68, 32, 0],
# [14, 56, 73, 48, 69, 1],
# [36, 48, 40, 28, 90, 2],
# [45, 47, 65, 12, 95, 3]])
항목을 원하는 위치에 추가하기
np.insert(X, 1, a, axis = 0)
# array([[69, 10, 98, 68, 32],
# [ 0, 1, 2, 3, 4],
# [14, 56, 73, 48, 69],
# [36, 48, 40, 28, 90],
# [45, 47, 65, 12, 95]])
np.insert(X, 1, b, axis=1)
# array([[69, 0, 10, 98, 68, 32],
# [14, 1, 56, 73, 48, 69],
# [36, 2, 48, 40, 28, 90],
# [45, 3, 47, 65, 12, 95]])